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Abstract— In this paper we present a humanoid system
that can integrate information provided by its foveal and
peripheral cameras. We use peripheral vision to detect and
pursue objects of interest based on simple shape and color
models. A detection event triggers the robot to direct its eyes
towards the object, thus making a more detailed analysis
of the observed objects in higher resolution foveal images
feasible. The recognition is based on principal component

analysis and is performed while the robot actively pursues
the detected object. The classification results are inferred
using information from a video stream rather than just a
single image. Once the desired object is recognized, the robot
reaches for it while ignoring other objects.

I. INTRODUCTION

A robot vision system is humanoid if it (1) possesses

an oculomotor system similar to human eyes and (2) if

it is capable of simultaneously acquiring and processing

images of varying resolution taken from two slightly dif-

ferent viewing directions. Approaches proposed to mimic

the foveated structure of biological vision systems include

the use of two cameras per eye [10], [1], [2], [6], i. e.

a narrow-angle foveal camera and a wide-angle camera

for peripheral vision, lenses with space-variant resolution

[9], i. e. a very high definition area in the fovea and a

coarse resolution in the periphery, and space-variant log-

polar sensors [8]. This work takes the first approach and

explores the advantage of foveated vision over current ap-

proaches which use equal resolution across the visual field.

Systems with zoom lenses have some of the advantages of

foveated vision, but cannot simultaneously acquire wide

angle and high resolution images.

The main idea from the practical standpoint is that a

humanoid robot would use peripheral vision to detect and

track interesting events and objects. A detection event

should trigger saccadic eye motions. After the saccade

the robot would start pursuing the area of interest, thus

keeping it visible in the high-resolution foveal region of

the eyes, assisted by peripheral vision if foveal tracking
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fails. Finally, high-resolution foveal vision should provide

the humanoid with a more detailed description of the

detected events and objects, upon which the robot could

take further actions.

Much research have been carried out to detect and

track objects of interest acquired by a humanoid vision

system. Cues such as color, disparities, optical flow and 2-

D shape have been used to implement real-time processing

of information acquired by such systems. Researchers

have typically studied behaviors such as visual attention,

vestibulo-ocular reflexes, saccadic movements, smooth

pursuit and mimicking of human movements [9], [11],

[10], [2], [4], [13]. However, peripheral vision played a

dominant or exclusive role in all these systems. Even

though any algorithm implemented on log-polar cameras

or space variant lenses implies the processing of foveal in-

formation, researchers who developed such systems seem

to have concentrated on problems that can essentially

be solved by using only peripheral vision. One notable

exception is the work of Breazeal et al. [2], in which

foveal images were used to detect the eyes of people

whose faces were first identified by peripheral vision. This

is a very specialized problem and the authors heavily

relied on the underlying behavioral context to simplify

the computations.

Here we describe a system that makes nontrivial use

of foveal vision in a task for which foveal vision is well

suited, recognition. Objects of interest are first detected

and tracked by our real-time visual system using infor-

mation acquired by peripheral cameras [13]. A detection

event triggers the robot to direct its gaze towards the

candidate region and the robot starts visually pursuing the

object. We do not assume that the detected objects are

stationary and we account for the object motion during

recognition. Since location and shape can be determined

much more accurately in foveal views, we apply principal

component analysis (PCA) to images acquired by foveal

cameras to recognize the object. As an application domain,

we consider the situation in which the person interacting

with a humanoid shows an object to the robot who then

reacts according to the identity of the shown object.

Proceedings of the 2003 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems
Las Vegas, Nevada · October 2003

0-7803-7860-1/03/$17.00 © 2003 IEEE 2173



Fig. 1. DB’s head with four cameras. Foveal cameras are above
peripheral cameras.

For experiments we used humanoid robot DB at ATR.

DB is a hydraulic anthropomorphic robot with 30 degrees

of freedom (DOFs). Each eye of the robot possesses two

DOFs (pan and tilt) and two color cameras: a wide angle

camera (100 degrees horizontally) for peripheral vision

and a narrow angle camera (24 degrees horizontally)

for foveal vision. The foveal camera is located above

the peripheral camera and their optical axes are roughly

aligned (see Fig. 1). Vision processing was implemented

on two state of the art dual processor PCs, one for foveal

and one for peripheral vision.

II. PROBABILISTIC SEARCH AND TRACKING

Our object detector and tracker is implemented in

a probabilistic manner. We represent the observed en-

vironment by a number of random processes (blobs).

Let’s denote the probability that a pixel located at u

having color intensity Iu was generated by the process

Θk, k = 1, . . . , K, by P(Iu, u|Θk). We also introduce

an additional outlier process Θ0, which models the data

not captured by other processes. Assuming that every

pixel stems from one of the mutually exclusive processes

Θk, k = 0, . . . , K , we can write the probability that color

Iu was observed at location u using the total probability

law

P(Iu, u|Θ) =
K

∑

k=0

ωkP(Iu, u|Θk), (1)

where ωk is a prior probability to observe the process Θk,
∑K

k=0
ωk = 1, and Θ = {Θ0, Θ1, . . . , ΘK}. Under these

assumptions, the posterior probability that pixel u stems

from the l-th process is given by the Bayes’ rule

pu,l =
ωlP(Iu, u|Θl)

∑K

k=0
ωkP(Iu, u|Θk)

. (2)

Ignoring the correlation of assigning neighboring pixels

to processes, the overall probability can be approximated

by

P(I) = P(I|Θ) =
∏

u

P(Iu, u|Θ). (3)

At each time step, we would like to determine (Θ1, . . . ,
ΘK , ω0, ω1, . . . , ωK) so that likelihood (3) is maximized.

Instead of maximizing criterion (3) directly, it is often

easier to minimize its negative logarithm (log-likelihood).

Before we can minimize the log-likelihood, we must

decide how to model the process distributions Θk. Our

approach uses shape and color properties to evaluate

the probability that a pixel was generated by one of

these processes. Assuming that these two properties are

independent of each other, we have

P(Iu, u|Θl) ∼ p(Iu|Θl)p(u|Θl). (4)

In many practical cases the 2-D shape of the tracked

objects is roughly ellipsoidal and can be approximated by

the center of the object’s image xl and by the covariance

matrix Σl of pixels contained in it. Thus, the shape part

of the probability that pixel u belongs to the l-th blob can

be characterized by a Gaussian distribution

p(u|Θl) =
1

2π
√

det(Σl)
exp(−

1

2
(x−xl)Σ

−1

l (x−xl)).

(5)

For the object’s color probability, we assume that it can

be modeled by a Gaussian mixture model

p(Iu|Θl) =

Kl
∑

k=1

ωl,kp(Iu|Il,k,Γl,k), (6)

where
∑Kl

k=1
ωl,k = 1 and

p(Iu|Il,k,Γl,k) =
1

√

(2π)2 or 3 det(Γl,k)
· (7)

exp(−
1

2
(Iu − Il,k)Γ−1

l,k (Iu − Il,k)).

The outlier process is modeled by a fixed uniform distri-

bution at each image pixel.

The blob and background colors are kept constant in

the current version of the tracker. They are learnt off-line.

Thus at each tracking step we need to maximize (3) over

shape parameters {(xk,Σk)}K
k=1

and mixture probabil-

ities {ωk}
K
k=0

. A good iterative approach is provided by

an EM-algorithm, in which this is done by first calculating

the posterior probabilities pu,l (given by (2), (4), (5), (7))

using the current estimate for {Θk} and {ωk} (the expec-

tation step) and then estimating the parameters {(xk,Σk)}
and {ωk} as if pu,l were constants independent of them

(the maximization step). The maximization step consists

of calculating the weighted mean and covariances of image

pixels with pu,l being used as weights and reestimation

of {ωk}. This process is repeated until convergence.

As we are interested in dynamic scenes captured by

cameras in motion, it is necessary that the detection

algorithm is also implemented in real-time. The ground
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Fig. 2. Tracking in peripheral and foveal images. The green ellipses
show the detected locations and shapes.

knowledge for our system is provided by color and shape

probability distributions. As it is time consuming to search

for ellipsoidal objects in an image, we use color only as

a ground knowledge to initialize the tracker. Based on

color, the probability that a pixel belongs to the l-th blob

is given by (6). Since we do not have any information

about the initial blob parameters, we randomly select their

shapes and locations in the image. The shape parameters

are varied in a controlled way so that 2-D sizes of the

generated blobs remain within prespecified limits. Color

probabilities (6) are then estimated at each pixel and the

tracker is started if the sum of all probabilities within

the window exceeds a certain threshold. These thresholds

are selected automatically in our system and are different

for different objects to account for various illumination

properties. More details about these algorithms can be

found in [14].

III. PURSUIT

Once the object of interest is detected in peripheral

images, DB’s eyes start to pursue it. The task of the

robot at this stage is to bring and keep the position of

the object in both peripheral images as close as possible

to the center point. This goal is achieved using a set of

simplified mappings at all the controlled joints (2 in each

eye, 3 in the neck, and 3 in the torso, thus altogether 11

DOFs). Although the proposed mappings are too simple

for an open loop control system, they work very well in

a closed loop case. Details about this approach can be

found in another paper [5]. Since the foveal cameras are

rigidly connected to the peripheral cameras and placed

above them with roughly aligned optical axes, this method

also brings the object close to the center point of foveal

images. To account for the offset due to the vertical

displacement between the two cameras and bring the

object even closer to the center point of foveal images, we

introduced a small offset in the vertical direction from the

center point of peripheral images. The peripheral cameras

are directed in such a way that the object is kept close

to the displaced center point instead of the true center

point. We determined a fixed offset in an off-line training

phase and although theoretically the offset depends on the

object depth, this method proved sufficient to keep the

object of interest close to the center of foveal images,

thus making foveal images suitable for recognition. While

the robot attempts to focus on the object, the detector

actively searches through the incoming foveal images,

which enable us to start tracking as soon as the object

appears in the fovea.

Our experiments have shown that we can estimate

objects’ locations and shapes much more accurately in

foveal than in peripheral images (see Fig. 2), which is

important for object recognition. However, it is important

to keep the information from peripheral images in the

loop because the object can quickly disappear from foveal

images when its motion is so fast that DB’s eyes cannot

keep up with it.

IV. RECOGNITION

Object recognition is an important task for humanoid

robots. Early approaches to object recognition were im-

plemented predominantly around the 3-D reconstruction

paradigm of Marr and Nishihara [7], but many of the

recently developed recognition systems made use of

viewpoint-dependent models. Most research concentrates

on object recognition from a single image, but some results

pointing out the importance of temporal information have

been published recently, for example [3]. One of the

most popular view-based methods is principal component

analysis (PCA), which is also referred to as a linear

subspace method or eigenspace method. In its most basic

form, this method projects the region of interest onto a

lower dimensional subspace, which is determined from

a number of test images. The distance of the projection

vector from known sample vectors is then calculated and

the object is classified based on these results. This method

has been first proposed for face recognition [12], but it has

found numerous other applications afterwards.

A. Quick Overview of PCA

The basic idea of principal component analysis is to

find a set of vectors that best account for the distribution

of object images within the entire image space. The

number of vectors needed to represent the object images

at sufficient detail is typically much smaller than the

dimension of the object images represented by them.

Given a set of training images {I1, . . . , Im} (images

are considered as column vectors with n entries in this

section), the eigenspace decomposition is given by the

eigenvectors of the covariance matrix AA
T , where A =

[I1 − I, . . . , Im − I] and I = 1

m

∑m

i=1
Ii is the average
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Fig. 3. The original and the warped image

object image. Since m < n, only the first m eigenvectors

of AA
T are different from zero. It is more stable to

calculate the eigenvectors of AA
T by calculating the sin-

gular value decomposition of A = UΣV
T . The columns

of U associated with the nonzero singular values of A

are the eigenvectors of AA
T associated with nonzero

eigenvalues. There exist efficient and numerically stable

methods to calculate the nonzero singular values of A and

the associated eigenvectors and we used this approach in

our experiments.

A major stumbling block towards a more widespread

use of eigenspace methods is the necessity to acquire im-

ages of objects at a fixed size and orientation. Eigenspace

methods have also been sensitive to the variations in the

background behind the observed object, to changes in the

illumination conditions, and to occlusions. Our solutions

to these problems are described below.

B. Affine Warping

To achieve invariance against the changes in orientation

and scale, our recognition system makes use of the results

of the blob tracking system. This system determines not

only the position but also the shape and orientation of the

object in each image. This is due to the EM algorithm from

Sec. II, which minimizes the log-likelihood with respect to

the position, orientation and shape of the tracked object.

This enables us to compute a mapping that transforms

the ellipse approximating object shape into an ellipse of a

fixed size and with both axes aligned with the coordinate

axes of the new image window. The resulting mapping in

homogeneous coordinates is given by the following affine

transformation:

Ai =









1 0
wx

2

0 1
wy

2
0 0 1

















wx

2ai

0 0

0
wy

2bi

0

0 0 1









[

R(θi)
T 0

0 1

]





1 0 −ui

0 1 −vi

0 0 1



 =





a11 a12 a13

a21 a22 a23

0 0 1



 , (8)

where ui = [ui, vi]
T and θi are the estimated position and

orientation of the tracked blob at time ti, ai and bi are the

half lengths of its major and minor axis, and wx×wy is the

fixed size of the window onto which we map the detected

ellipse. Fig. 3 demonstrates this process.

Fig. 4. The original image and the warped LoG filtered image. The
black part of the warped image is not used for recognition.

To build the vectors needed for the principal component

analysis, we parse through the pixels contained in the

new ellipse. The generated vector has a fixed dimension

because the ellipse size is fixed. All other pixels in the

window should be ignored because with high probability

they do not belong to the object. In this way we ensure that

the percentage of background pixels that do not belong to

the object but still enter the principal component analysis

is low, thus ensuring that our method is not sensitive to

changes in the background.

C. Robustness to Illumination Changes

It is well known that in their basic form eigenspace

methods are sensitive to variations in the lighting condi-

tions. It has been proposed that PCA can be made more

robust by filtering the images with edge operators because

edge maps are less sensitive to illumination changes.

Eigenspace decomposition can be applied to the edge

maps instead of the original images. However, edges

are localized and even small errors in the calculated

blob parameters could cause the recognition process to

breakdown.

One way to alleviate this problem is to spread the

edges with a membrane function, which is equivalent

to the convolution of the edge data with a first order

regularization filter [15]. We find it more natural to use

the method that has already shown its effectiveness on

other similar problems such as the correlation-based stereo

matching. In correlation-based stereo matching, images

are often first filtered with a LoG (Laplacian of Gaussian)

filter:

LoG(x, y) =
1

πσ4

(

1 −
x2 + y2

2σ2

)

e
−

x2 + y2

2σ2 . (9)

Unlike in [15], the smoothing operator comes before the

edge operator. The parameter σ makes it possible to tune

the filter. Unlike stereo matching, where a small σ is

often preferable to achieve good localization, it is better

to use larger σ for recognition in order to increase the

spread of the edges. This makes the approach less sensitive

to small errors in position/orientation estimation. Due to

the smaller size of the warped images compared to the

original images, it is tempting to apply the LoG filter to

the warped images and not to the original images. The
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problem with this approach is that the spatial relationships

between pixels are changed in the warped images. This

would cause variations in the effect of the LoG filter based

on the pixel position, thus spoiling the spatial properties

of the filter. We therefore apply the LoG filter first and

the affine warping afterwards.

D. Training and Recognition

Our goal is to enable DB to recognize objects shown

by a person. In the training phase, the user is expected

to present all relevant objects. Since it is impossible to

always place the object in the same location in front of

the humanoid, the user translates and rotates it around the

expected placement position. This generates a rich set of

viewpoints for object recognition. We set the number of

captured viewpoints to 100 per object. Using the methods

described in the previous sections, the object is detected

and tracked in the peripheral images so that DB can direct

its gaze towards it and start pursuing it. After the object is

detected in foveal images, these images are LoG filtered

and warped into a normalized shape of Fig. 4. The pixels

within the enclosing ellipse of the warped image are used

for the principal component analysis. After the set of most

significant eigenvectors {Γk} is determined, we project

the training images onto the eigenspace and store the

projection results and the average image Ĩ =
∑m

i=1
for

the future on-line recognition.

DB’s foveal vision is provided by standard NTSC

cameras. To avoid dealing with the interlacing effects,

we capture foveal images at 30 Hz and at 320 × 240
pixels resolution. On the other hand, peripheral images

used for initial detection, tracking, and pursuit are captured

at 60 fields per second and at full resolution. Since the

objects are shown to the humanoid from a distance that

ensures that the whole object is contained in the foveal

image, we cannot expect that the object will cover the

whole image. We warp the object onto the window size

of 160 × 120 pixels, which typically causes a slight

subsampling compared to its original size in the foveal

image. But this is still high definition compared to the

size in the peripheral images. The size of our eigenvectors

is thus equal to π ∗ 160/2 ∗ 120/2 ≈ 15079. Except for

the singular value decomposition needed to calculate the

eigenvectors, all other operations are done in real-time

by our system. This is obviously not a limitation because

there is no reason to insist on real-time computation of

the singular value decomposition in the training phase.

Many operations carried out in the recognition phase

are the same as in the tracking phase. This includes the

detection and tracking in the peripheral images, pursuit of

the object with DB’s eyes, and detection, tracking, LoG

filtering, and affine warping in foveal images. The warped

and LoG filtered foveal image is then projected onto the

previously computed eigenvectors

ωk = Γ
T
k (I − Ĩ). (10)

The resulting projection ω is compared to the prototypes

Ωi generated in the training phase and the solution is given

by the class of the closest prototype

arg min
i

‖ω − Ωi‖. (11)

We made several improvements to increase the perfor-

mance of the recognition system. Firstly, the classifica-

tion is taken as valid only if the same object has been

recognized in left and right foveal image. Secondly, we

exploit the dynamic nature of our system and run the

recognition process on a time sequence of images. The

object is deemed recognized only if the identity of the

object does not change over a heuristically chosen time

interval. In our experiments we typically used 3 images

per second to allow for some interframe motion and waited

for two seconds before accepting the recognition result.

For every single image, the above approach selects one

of the prototype objects. This is not desirable if an object

that does not belong to the database is shown to the robot.

But since eigenspace methods enable us to reconstruct the

image of the observed object, we can compute the distance

between the original image and the reconstructed image

[12]

ε = ‖I − (Ĩ +
∑

k

ωkΓk)‖. (12)

If this distance exceeds a certain threshold, we consider

that the object does not belong to the database and is

thus classified as unknown. Unfortunately, the quality of

reconstruction can be quite different from object to object

and it is difficult to select one threshold for all objects. We

therefore introduced an additional (but optional) training

phase to select proper thresholds for all objects. In this

training phase, the various objects of known identity are

shown to the robot and we measure how the reconstruction

method performs, i. e. we sample the reconstruction error

as given by (12). We then set the threshold φi for the

reconstruction error of object i to

φi = (1 − λ)
1

ni

ni
∑

k=1

εi
k + λ

1

n0

n0
∑

k=1

ε0k, 0 ≤ λ ≤ 1, (13)

where ni is the number of occurrences of object i and n0

is the number of occurrences of objects not belonging to

the database. This approach can prevent the system from

recognizing unknown objects.

V. RESULTS AND CONCLUSIONS

We carried out several experiments to test our approach.

In all experiments we used 100 training images per

object and computed principal component analysis on the

combined set of training images (300).
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Fig. 5. Objects used in the experiments and DB indicating that he
recognized the dog by pointing towards it
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Fig. 6. Discrimination of objects from Fig. 5 shown to the robot with
slight movement (see text for explanation)
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Fig. 7. Discrimination of objects from Fig. 5 shown to the robot with
large movement (see text for explanation)

Fig. 6 and 7 show the performance of our method with

respect to the amount of object motion. Clearly, it is much

more difficult to recognize an object when it is moved

quickly and snapshots are taken from various locations in

space. In each experiment, one of the objects was moved in

front of the robot and 200 snapshots of the moving object

were taken. The bar graphs show the normalized average

distance of the best prototype for each class (object) from

the object image projected onto the eigenspace using (11).

A lower score is better. The prototypes associated with

the shown object always achieved the lowest score, but as

expected the difference decreased with larger movements.

In our interactive experiment, DB was required to dis-

tinguish between teddy bears and the toy dog (see Fig. 5).

All toys have similar color and a common color model was

learnt to detect and track all objects. To indicate successful

recognition, DB was asked to point towards the object

when recognizing the dog and to do nothing when seeing

the teddy bears. The detector and tracker successfully dealt

with objects appearing and disappearing from the view and

the foveal cameras were able to lock on the shown object

(see Fig. 2). There were some false classifications in our

interactive experiments when the object was very close

to DB’s eyes and became too big for the foveal images.

However, our dynamic approach uses several snapshots for

final identification and was always able to filter out wrong

identifications and DB always pointed towards the dog and

ignored the teddy bears (see video). All calculations were

done in real-time, i. e. at 60 Hz for detection and pursuit

and at 30 Hz for recognition.

We conclude that the proposed approach is successful

at locating, pursuing and recognizing objects in motion.

We have demonstrated for the first time how to integrate

peripheral and foveal vision on a humanoid robot to solve

these problems in real-time.
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