
Humanoid Robot Learning and Game Playing Using PC-Based Vision
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Abstract

This paper describes humanoid robot learning from ob-
servation and game playing using information provided
by a real-time PC-based vision system. To cope with ex-
tremely fast motions that arise in the environment, a vi-
sual system capable of perceiving the motion of several
objects at 60 fields per second was developed. We have
designed a suitable error recovery scheme for our vision
system to ensure successful game playing over longer pe-
riods of time. To increase the learning rate of the robot
it is given domain knowledge in the form of primitives.
The robot learns how to perform primitives from data col-
lected while observing a human. The robot control system
and primitive use strategy are also explained.

1 Introduction

We are interested in learning humanoid robot behaviors
by observing how people perform a task. The ability to
observe humans and their actions using a set of cameras
mounted on a humanoid robot’s head is a necessary pre-
requisite towards this end. We would greatly benefit from
a system that can detect and track multiple objects from
images acquired, from moving cameras, at high frame
(field) rates, e. g. at 60 Hz, which is the highest rate we
can get from a standard, interlaced NTSC camera.

Air hockey was chosen as an environment in which to
conduct this research for many reasons. It can be set up
within a normal size laboratory and a software version
can be created that allows a person to play using only a
mouse. Currently we are only concerned with the move-
ments of the objects in the plane of the board. Thus the
sensing needs are simplified because information from
only one camera is sufficient to play the game.

At each time step, a robot must at least know the posi-
tion of the puck on the table. Its performance could be
improved if it could also take into consideration the posi-
tion of the opponent’s paddle and the position of its own
paddle. It is very important that this data is acquired at
a high enough frequency, e. g. at 60 Hz, otherwise it is
very difficult to predict accurate puck trajectories in time

to command the robot hand motion necessary to hit the
puck or to prevent the opponent from scoring a goal.

The next section briefly describes the framework that
uses predefined primitives in which this research was per-
formed. More details on the framework can be found in
[2] and [3]. This paper focuses more on a recently devel-
oped PC-based vision system, control of a high degree of
freedom humanoid robot, and the coupling of the vision
data to the control system.

2 Learning from Observation using Primitives

It is our hope that primitives can be used to reduce the
dimensionality of the learning problem [1, 7]. Primitives
are solutions to small parts of a task that can be com-
bined to complete the task. A solution to a task may be
made up of many primitives. In the air hockey environ-
ment, for example, there may be primitives for hitting the
puck, capturing the puck, and defending the goal. It is
often possible to break a primitive up further into smaller
primitives.

Figure 1: Framework for learning from observation us-
ing primitives.

2.1 Strategy for Primitive Use

Figure 1 shows our framework designed for conducting
research in learning from observation using primitives.
Currently, a human, using domain knowledge, designs



Figure 2: A small segment of data captured while a hu-
man operates in the air hockey environment. The graph
on the left shows 2D, � and �, traces of the paddle and
puck. On the right this same data is shown plotted against
time.

the candidate primitives that are to be used. The prim-
itive recognition module segments the observed behavior
into the chosen primitives. This segmented data is then
used to provide the training data for primitive selection,
subgoal generation, and action generation. The primi-
tive selection module provides the agent with the primi-
tive type to perform for the observed environment state.
The desired outcome, or goal, of performing that primi-
tive type is specified by the subgoal generation module.
Lastly, the actuators must be moved to obtain the desired
outcome. The action generation module finds the actu-
ator commands needed to execute the chosen primitive
type with the current goal.

After the agent has obtained initial training from observ-
ing human performance, it should then increase its skill
at that task through practice. Using only the four modules
mentioned above, the only high-level goal of the robot is
to perform like the teacher. The only encoding of the goal
of the entire task is in the implicit encoding in the ob-
served primitives. The learning from execution module
contains additional domain information needed to eval-
uate the performance of the system toward obtaining a
high level task objective. This information can then be
used to update the modules and improve performance be-
yond that of a teacher.

Using this framework, DB has learned a shot taking be-
havior from observing a human player. DB decides on
the type of shot that will be attempted, the position the
puck will be hit, and the pucks desired velocity after it is
hit, from observed data. We are currently devising other
ways to evaluate the performance of DB in a quantitative
way such as comparing the desired hit outcome with the
actual outcome.

2.2 Air Hockey Primitives

As explained above, human domain knowledge was used
to define a set of primitives to work with. The full list

of primitives currently being explored in the air hockey
environment is:

� Left Hit: the player hits the puck and it hits the left
wall and then travels toward the opponent’s goal.

� Straight Hit: the player hits the puck and it travels
toward the opponent’s goal without hitting the side
walls.

� Right Hit: the player hits the puck and it hits the
right wall and then travels toward the opponent’s
goal.

� Block: the player deliberately does not hit the puck
but instead moves into a blocking position to prevent
the puck from entering their goal.

� Prepare: movements made while the puck is on the
opposite side from the player. The player is either
preparing for a shot, or preparing to defend their
goal.

� Setup: the puck is moving very slow within reach
and the player moves to a setup position in prepara-
tion to make an accurate shot.

The observed data must first be segmented into the above
primitives. To accomplish this, critical events, which are
easily observable occurrences, are used. An example of
a critical event in air hockey is a puck collision. During
a collision the ball speed and direction change rapidly.
A small portion of data that has been collected while a
human played against the humanoid robot is shown in
Figure 2. From this data it can be seen that the puck-
paddle hit locations occur when the puck and paddle are
within hitting range and there is a significant change in
the puck’s velocity.

3 Perceiving the Primitives

In order to perceive the primitives and to play air hockey,
the robot must be able to sense object locations in the
environment in real-time. The task is made more difficult
because the robot uses its own eyes to play the game. This
causes extremely fast image motions due to the combined
real world and camera motions.

3.1 Calibration

Since air hockey is played on a flat surface, we can model
the image plane to hockey board mapping as a perspective
mapping between two planes. It is well know that such a
mapping can be modeled by a 3x3 homography, which
is defined up to a scale factor and thus has 8 degrees
of freedom [11]. Since this mapping is invertible, the
information from one eye (camera) suffices to uniquely
determine the position of the puck on the board. How-
ever, we must be able to update this mapping at every



measurement time because the robot’s head moves dur-
ing the game. In theory we could do this by calibrating
the camera at a preferred configuration and use forward
kinematics to calculate the current image-to-board map-
ping, but this is impractical because the humanoid robot
motion involves many degrees of freedom and is highly
nonlinear. It is therefore better to recalibrate the system
at every time step. Since every homography has eight de-
grees of freedom, we must know the position of at least
four points on the table and in the image to recalibrate the
camera at every measurement. This increases the number
of objects that we need to track to at least seven; 4 fixed
points on the board for calibration, puck, and both pad-
dles. To make the recalibration more accurate and the
tracking process more robust, it is desirable to make use
of more than 4 points to recalibrate the system.

A homography describing the perspective mapping be-
tween the image plane and the hockey board is given by

������ ����������� � � �� � � � � �� � � �� (1)
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Writing Eq. (2) in a matrix form results in a matrix equa-
tion �������� � �� where ���� is a �� � 	 matrix. As
���� is defined only up to a scaling factor, the solution
is well known to be the eigenvector associated with the
smallest eigenvalue of a 	 � 	 matrix �� ������� [11].
Alternatively, one could solve Eq. (2) directly by setting
one of the parameters, typically 
������, to 1.

3.2 Visual Processing

The core of DB’s visual system is a probabilistic tracker
that uses color and shape information to find relevant ob-
jects in the scene. In this system, the observed environ-
ment is represented by a number of mutually independent
random processes (blobs). Each entity to be tracked is
represented by one process. We also introduced an addi-
tional outlier process that models everything not captured
by other processes.

A Bayesian approach is used to evaluate the probability
that a pixel was generated by one of the modeled pro-
cesses. To model color probabilities, we observed that
there were quite significant variations in lighting condi-
tions on the hockey board. For example, the puck appears
much brighter when it approaches the human player than

on the other side of the board (see Fig. 3). This made it
impossible to model colors in the RGB space. However,
2-D HSV space color models, in which we ignored the
brightness component, turned out to be sufficiently stable
to model color variations by a covariance matrix of the
Gaussian probability distribution.

The puck, paddles, and markers on the edge of the board
all have a roughly ellipsoidal shape and their 2-D pro-
jected shapes can be approximated by the center of the
projection image and by the covariance matrix of pixels
contained in the projection. Thus the shape part of the
probability that a pixel belongs to one of the blobs can
also be characterized by a Gaussian distribution. How-
ever, since the image sizes of the objects vary as they,
and the robot, move, we cannot assume that the underly-
ing covariance matrices are constant.

The calculation of the objects’ position and shape is based
on an EM (expectation-maximization) algorithm. The
color models are kept constant in the current version of
the hockey game tracker and are learned off-line. See [9]
for more details about the implemented algorithm.

To achieve real-time operation of the system, we em-
ployed techniques such as multiscale representations,
windowing, masking and parallel processing on a dual
processor PC. We also developed a special technique
based on affine warping to subsample images selectively
only in those regions that contain too much data for real-
time operation [10]. On a dual processor 2 GHz Pentium
4 PC, the system needs 9.5 milliseconds to track 9 objects
(six markers on the board, both paddles, and the puck)
at 60 Hz with the window size for affine warping set to

�� 
� pixels for all objects and with the number of EM
iterations limited to 2.

3.3 Strategy for Error Recovery

Typically, a game of air hockey goes on for several min-
utes and the vision system is expected to provide loca-
tions of the objects of interest during this period. It is
extremely annoying if the data collection or the actual
hockey game must be stopped due to the failure of a vi-
sion system. Since it may not be possible to completely
avoid tracking failures, we designed a specialized error

Figure 3: Brightness variations in the appearance of the
puck



Figure 4: The view from the robot’s eyes with the tracked
objects marked. The puck is totally occluded in the right
image. The right image is also blurred due to the move-
ment of the robot.

recovery scheme that ensures the successful operation of
the vision system over longer periods of time.

Most of the blobs never come close to each other in the
air hockey game. There are three groups: the blobs fixed
at the edge of the board, the two blobs associated with
the paddles used for hitting the puck and the puck it-
self. Since the shape-related probability distributions as-
sign larger values to the neighboring pixels, there is no
need for blobs from within these groups to have different
colors. We can thus in principle use only three different
colors to identify the objects of interest, although in prac-
tice it might still be advantageous to use more colors.

Recovering from Occlusions. There are a few situa-
tions when our tracker might fail. The most common
problem is that a robot arm sometimes completely oc-
cludes the puck and it is therefore not possible to locate
it, see Fig. 4. Such cases are detected by calculating the
sum of probabilities normalized by a number of pixels
considered in the calculations. If this sum becomes very
small (less than 10% of the expected area covered by the
puck within the region of interest) or even zero, then the
calculation of the corresponding blob location becomes
unstable and the tracker is assumed to have failed. When
this happens, the tracker keeps looking for a puck for half
of a second by starting the EM iterations using the latest
detected location as an initial value.

After half of a second it is considered unlikely that the
puck would still be situated near this position and the
tracker starts two new search processes: one in front of
the opponent’s paddle where we can assume that there
will be a contact with the puck in the future and the other
one in the banded region along the robot side of the board
where the puck might still be situated in the case of occlu-
sion. The second process randomly generates initial puck
positions within the search region and thus ensures that
the puck will eventually be found regardless of its current
position within this region. It is important to note that
we do not embark on an exhaustive search covering the
whole board, that couldn’t be carried out at 60 Hz. The
success of one of the search processes terminates them
both.

Figure 5: The left graph shows the raw vision cordinates
of four objects placed at known locations and the moving
puck. On the right is the computed position of the puck
using the information shown to the left. The circled seg-
ments are where the vision system lost track of the puck.

Figure 5 shows the results of the visual tracking system
during approximately 4.2 seconds of game play. During
this interval the set markers are always being tracked, but
on two occasions the puck was lost then reacquired. The
puck was lost just after the robot hit it. This is not a crit-
ical time since the robot’s hit motions are fully planned
and begin more than 100msec before the puck is hit.

Recovering from Tracking Errors. It does happen oc-
casionally that one of the side blobs used for recalibration
is lost by the tracker. This is most often caused by a very
fast motion of the robot’s head when the robot performs a
shot, which results in low-quality images and huge image
motions. If the robot can’t see at least 4 side blobs, the re-
calibration cannot be carried out and the robot can’t play
the game. But fortunately this problem is not too serious
because the robot calculates the motion trajectory before
it starts executing the shot. After executing the shot, the
robot returns to a preferred configuration and since the
position of the board remains constant, we can store the
positions of all of the side blobs at the preferred config-
uration and restart the tracking using the stored positions
as initial values. The side blobs are detected again when
the robot returns to its preferred configuration after the
shot execution.

Although problems with the paddle tracking are rare, we
have nevertheless implemented an error recovery scheme.
It is based on the fact that the motion of both paddles
is confined to a region along the opposite sides of the
hockey board. Thus if one of the paddles is lost, we can
start a search process in a suitable banded region along
the side of the board. The paddle positions are randomly
generated in this region and used as initial values for the
EM iteration until the paddle is found. This is similar to
the second search process when looking for a puck.



Figure 6: The six given configurations of the robot used
to compute all enclosed configurations.

4 Positioning the Humanoid Robot

At first it may appear that the robot only needs to use one
arm to play air hockey. Using only the arm simplifies
the system in that there is less movement of the head and
therefore the cameras. It also eliminates many degrees
of freedom. Our first implementation used this scheme
and we found it to be extremely impractical. It severely
limits the moves the robot can make and the area that
can be reached on the board. Moving the torso increases
the robot’s abilities and extends its reach. But besides
adding three more degrees of freedom to control, it causes
the head to move in ways that are unnatural looking and
the air hockey board to not always be fully within view.
Therefore the head and eyes must also be controlled to
ensure the board is always within the field of view of the
robot. The total degrees of freedom needed for this task is
17. The following joints are used in this approach: shoul-
der (2 joints), arm rotation, elbow, wrist rotation, hand (2
joints), waist (3 joints), head (3 joints), and eyes (2 joints
each eye, pan and tilt). Using all the joints above, except
for the head and eyes, the robot must be positioned so
that the paddle is flat on the board and moves smoothly
from one location to another. The other joints are used to
position the head and eyes so that the entire board is in
view at all times.

We have manually positioned the robot in several posi-
tions on the board while maintaining these constraints,
figure 6. To get joint angles for any desired puck po-
sition, we interpolate using the four surrounding train-
ing positions and use an algorithm similar to that used in
graphics for texture mapping [4]. This approach allows
us to solve the inverse kinematics of the robot with ex-
treme redundancy in a simple way.

Figure 7 shows an example of using the four training

Figure 7: An example of using four given corner config-
urations to compute a configuration within the polygon.

positions B1, B2, T1, and T2 to compute the configura-
tion needed to place the paddle at the desired position of
� ��� ��. The four set positions, B1, B2, T1, and T2, sur-
rounding the desired position � ��� �� define a polygon
with � up and  to the right. A vertical line is drawn
at � ��� and points are defined at the locations where this
line intersects the top and bottom of the polygon, points
T and B. The joint angles are computed for the bottom-
intersect location, B, by using the two joint configurations
associated with the two bottom set locations, B1 andB2.
B1 and B2 configurations are weighted averaged together
with each weight computed from the percentage of the
point B from B1 and B2. As shown in the example in
figure 7, the joint angles computed at point B will be 0.8
times the angles specified by point B2 plus 0.2 times the
angles specified at point B1. The configuration for the top
point, T, is computed in the same way using the top two
corners of the polygon, T1 and T2. The configuration to
place the paddle at the locations B and T now exist and
are used to compute the configuration needed to place the
paddle the location � ��� ��. The percentage of the dis-
tance that � ��� is from the bottom intersect point to the
top intersect point is computed and is used as a weight to
average the two computed joint configurations of B and
T.

The robot configuration needed to place the paddle at any
location within the training examples can now be com-
puted. The robot is moved by specifying a desired board
location along with a desired movement speed. A straight
line trajectory is then computed from the present location
to the desired location. The robot is commanded to a po-
sition 420 times per second and therefore there must be a
point on the trajectory at each 1/420 second interval. The
position of the trajectory points that the paddle will move
through is computed using a fifth order polynomial equa-



tion. The robot is moved through the trajectory points and
at each point a configuration for the robot is computed as
described earlier.

Currently, a hit is made only when the robot is not moving
and the desired end velocity of a move is set to zero. With
this strategy the maximum velocity of the robot’s move,
and therefore the paddle movement, occurs at the halfway
point of the straight line trajectory.

5 Future Work

In term of vision processing we are looking toward pro-
viding an active stereo tracking system utilizing the eyes
and head of the robot. Our goal is to provide a better
field of view for the robot, allowing better estimation of
the puck and the paddle of the opponent via active track-
ing. Currently, all of the vision processing is performed
with only one PC. For a future extension to our system,
and to provide robustness and flexibility, we are currently
building a Beowulf PC Clusters system [8] to support ad-
ditional cue processing, and stereo vision processing, as
well as control.

Currently much of the causal information of the primi-
tives is pre-given by a domain expert. We believe a better
way of determining these primitives would be through a
process of segmentation, which can detect the causality of
an observed action. In doing so, we will be able to gener-
alize the abilities to extract primitives, thus allowing us to
move across domains. The research of Dillmann et al. [5]
and Fod et al. [6] give some insights into automatically
segmenting observed data into primitives.

6 Conclusions

We have developed efficient methods that allow a hu-
manoid robot to learn and play the game of air hockey
from the observation of human performance. Our ap-
proach is based on the description of the game in terms
of motion primitives that can be combined to describe the
complete task. We have shown that it is possible to play
an air hockey game using the robot’s eyes and PC-based
vision that can extract the necessary information at 60 Hz
from a standard NTSC video. Using our own vision sys-
tem enabled us to design an effective error recovery strat-
egy, which would be difficult to implement with a closed
commercial tracking system.

We have shown how to identify motion primitives in the
data collected by the robot’s eyes and how to extract the
parameters needed for the performance of the primitives.
Finally, efficient methods have been described that allow
us to select proper movement primitives during the actual
air hockey game and to plan the high degree of freedom
joint space trajectories needed to replicate the selected
movement primitives with the robot.

The overall framework described in section 2 provides

much flexibility in conducting this research. The abil-
ity to use the observed data in a systematic way, and to
learn while practicing, were two of the main concerns
while creating the framework. The ability to generalize
within the environment and across to other environments
was also considered within this framework. Techniques
described in this paper provide the basis for our research
on learning from observation using primitives.
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