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Robot vision & manipulation

➘Interaction of perception and action 
• perception provides data for motor control and planning 
• motor actions can facilitate perception, 
• all kinds of learning should be based on perception-action coupling 

➘Segmentation via manipulation 
➘Learning object representations 
➘Object singulation from a pile & grasping
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Active exploration

➘ Acquire	  visual	  experiences	  through	  experimental	  
manipula5on	  (Me8a	  and	  Fitzpatrick,	  Adap5ve	  
Behavior,	  2003;	  Fiztpatrick	  and	  Me8a,	  Phil.	  Trans.	  
Royal	  Society	  London	  A,	  2003)	  

➘ It	  is	  much	  easier	  to	  define	  an	  object	  if	  the	  system	  is	  
ac5ve.	  
➘ Coherent	  mo5on	  is	  a	  very	  strong	  cue.	  

➘ Lately	  there	  has	  been	  lot	  of	  interest	  in	  interac5ve	  
percep5on,	  especially	  to	  support	  manipula5on	  
tasks:	  
➘ (Ude	  et	  al.,	  IJHR	  2008;	  Schiebener	  et	  al.,	  Humanoids	  
2011;	  Ude	  et	  al.,	  ICRA	  2012;	  Kootstra	  et	  al.,	  ICRA	  2008;	  
Kenney	  at	  al.,	  ICRA	  2009;	  Gupta	  et	  al.,	  ICRA	  2012;	  Krainin	  
et	  al.,	  IJRR	  2011;	  Chang	  et	  al.,	  2012;	  ...)  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Active Exploration for Learning 
Object Representations
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Bottom-up segmentation

➘If action supports perception, crude bottom-up 
segmentation is fine 

➘Simple criteria for initial segmentation 
➘Refinement through action
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Generate object
hypotheses

Try to push one

Push the
object again

Check if
it moved as a 

rigid body

Verify and 
accumulate 

features

no

yes

Discover unknown objects
Learn visual multi-view 

representation

System Overview

Stergraršek Kuzmič and Ude, Humanoids 2010 
Schiebener et al., Adaptive Behavior, 2013 
Schiebener et al., ICRA 2014
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Generation of object hypotheses

➘Calculate 3-D points from Harris interest 
points using stereo vision. 

➘Look for regular surfaces: find subsets of 
the points that lie on such surfaces. 

➘Feature proximity is another strong cue. 
➘Regular surface patches serve as initial 

object hypotheses. 
➘RANSAC.
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Generation of object hypotheses

➘Hypotheses are often incomplete and may 
sometimes be wrong 

➘Experiments (complex scenes): 
 
Good  part of object  bad 
50 %  39 %   11 % 

➘Initial hypotheses are unreliable and incomplete 
but they are a good indication for possible 
objects and their location 

➘Inducing motion on an object allows its 
separation from the background
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Verification by Pushing

➘Randomly generated pushing actions 
• Planning? 

➘Hypothesis verification by RANSAC: 
check if the hypothetical object moved 
as a rigid body.
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Feature Accumulation
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Object Learning by Bimanual 
Pushing
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Acquired Sequences
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Enhancements: Force feedback

Schiebener et al., Humanoids 2012
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Object Learning for Recognition

➘“Bag of Features” model with SIFT descriptors at Harris 
interest points and MSER feature descriptors 
• Segmentation provided by manipulation 
• Doesn't require reliable long-term feature tracking 

➘Global hue histogram in the area spanned by interest points 
➘Recognition: BoF model and hue histograms 
➘Segmentation through pushing

Recognition rates (15 objects learned with our 
approach + 25 from images)

that are assigned to clusters learned from a large number
of training features. We create the BoF model using SIFT
descriptors of the verified feature points belonging to the
object hypothesis. To include color information, we do not
directly use color MSERs, but instead create a saturation-
weighted hue histogram [23] within the ellipse spanned by
the principal axes of the set of confirmed interest points
and MSER centers. The BoF model and the hue histogram
together form an object descriptor that incorporates both
local greyscale descriptors of salient points and global color
information.

After each push and subsequent validation of the points
and MSERs belonging to the hypothesis, two object descrip-
tors are saved. One is created using all validated features
that have been accumulated so far, with the intent to obtain a
comprehensive description of the object. The other uses only
those validated features which are visible at that instant, thus
having a snapshot-like character. Depending on the number
of pushes, several descriptors are created and saved for each
object that needs to be learned.

For object recognition, the descriptor of the considered
hypothesis is calculated and compared to the stored descrip-
tors of known objects. As a distance measure between the
two descriptors, we use the weighted sum of normalized �

2

histogram distances of the BoF model and the hue histogram.
Both histogram distances are normalized individually by
dividing them by the average distance of the hypothesis to
all stored histograms. For recognition, we then apply a k-
nearest-neighbors decision.

The performance of bag-of-features based recognition
strongly depends on the successful segmentation of the object
that needs to be recognized. The segmentation problem is of-
ten resolved by statistical feature clustering and by regular or
randomized windowing [17]. As the segmentation problem is
identical to the one that we face during the learning process,
we use our hypothesis generation and active segmentation
approach also to support recognition. By pushing the object
several times, we achieve very high recognition rates due to
the highly accurate segmentation.

A. Experimental Results

Since pushing induces a rather uncontrolled object motion,
it is of crucial importance for the success of the learning
process that the robot does not loose track of the object. The
SIFT descriptor is sensitive to large changes in scale and
rotations in depth, therefore large translations in the direction
of the camera axis or significant rotations may be harmful,
while a translation in the image plane causes no problems.
Table I shows with which reliability the object is recovered
after a motion along the camera axis. Enlarging the distance
from the camera by a certain factor causes a scale change
of the same factor. As can be seen, moving the object over
a distance of up to 30% of its distance to the camera is
unproblematic, above that value there is an increasing risk
of loosing track. In practice this means that even for a rather
small object-camera distance of 50 cm, a translation of 15
cm is safe.

TABLE I
OBJECT RECOVERY RATE AFTER MOTION IN DEPTH

distance ratio 1.2x 1.3x 1.4x 1.5x 1.6x
recovery rate 100 % 100 % 91 % 54 % 4 %

TABLE II
OBJECT RECOVERY RATE AFTER ROTATION

rotation angle 20� 30� 40� 50� 60�
recovery rate 100 % 100 % 83 % 56 % 11 %

TABLE III
OBJECT RECOGNITION RATE FOR THE INITIAL HYPOTHESES AND AFTER

A FEW PUSHES

init. hyp. 1 push 2 pushes 3 pushes
77 % 86 % 96 % 98 %

Greater peril arises from rotations in depth. Table II shows
the sensitivity of our approach to such transformations. While
a change in orientation of the object of up to 30� is not a
big problem, larger rotations may lead to the object not being
recovered after the push. Therefore, if the pushing strategy
is designed with the intent to reveal different sides of the
object, it is safer to execute many small rotations instead of
a few large ones.

To test the usefulness of the obtained object representation
for recognition, we learned the appearance of 25 objects from
different viewing directions (20 histograms for each object).
As recognition is based on a bag-of features model and on
a global hue histogram of the object, it is necessary to first
segment the object. Then the BoF and hue histogram are
calculated, and a 3-nearest neighbors decision based on the
�

2 histogram distance to the known objects is made.
To evaluate the performance of the recognition system,

we tested using our initial hypothesis generation (see Sec.
II) as well as the validated hypotheses after the probing
pushes. Table III shows the recognition accuracy for the
initial hypotheses and for confirmed hypotheses after 1 � 3

pushes. As can be seen, a combination of the greyscale-based
BoF and hue histogram allows for very reliable recognition.
In the process of iterative pushing and verification, false
features are discarded and an increasingly complete object
representation is obtained, which leads to nearly error-free
recognition after a few pushes.

V. CONCLUSION

While in this paper we focused on autonomous acquisition
of object models, our system allows the accumulation of
knowledge from different sources. Models can be acquired
either from large databases of stored models, in interaction
with a human teacher where the human teacher performs
the pushes instead of the robot, or fully autonomously.
Such an approach is essential to prevent on the one hand
excessively long learning times and on the other hand to
enable acquisition of new knowledge as need arises. We
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Interactive Object Learning
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Enhancements: Foveal Vision

➘Integration of foveal vision and robot 
manipulation for learning object 
representations and for recognition. 

➘Similar visual processing. 
➘Improved models and recognition rates.
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Learning by Foveated Vision

Bevec & Ude, Humanoids 2013
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Enhancements: Reactive Grasping 
& In-Hand Manipulation

Ude et al., International  
Journal of Humanoid  
Robotics, 2008 
!
Schiebener et al.,  
Humanoids 2012
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Learning pushing actions
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Data acquisition
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Pushing control

Omrčen et al., Humanoids 2008
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Summary

➘More integration between control, vision and planning is 
necessary. 

➘Better integration with other modalities, especially tactile 
sensing. 
!

➘Contributions by: David Schiebener, Damir Omrčen, Robert 
Bevec, Jun Morimoto, Tamim Asfour 

➘Funding: PACO+, Xperience, NICT (Japan Trust)


