

Workshop on "Active Visual Learning and Hierarchical Visual Representations for General-Purpose Robot Vision"

Hong Kong - May 31st, 2014

Deep Representation Hierarchies for 3D Active Vision

Silvio P. Sabatini

Department of Informatics, Bioengineering, Robotics and Systems University of Genoa

Binocular eye movements & stereopsis

Convergent optical axes

- Deviations from primary position rotate the epipolar lines and vertical disparities (VD) become possible
- As the eyes move the epipolar lines move and become more and more tilted
- Larger search zones to solve the stereo correspondence problem

An active vergent system has to cope with the attendant aperture problem for binocular disparity

Different specializations

... for reciprocal improvement of stereopsis and binocular control of eye movements

→ VERGENCE AS A PARADIGMATIC TASK

- The question arises how to learn *disparity-vergence* response curves, directly (without explicit calculation of the disparity map)
- We will demonstrate that it is possible to gain different specializations according to the paradigm of deep architecture

Deep architectures

 Deep architectures learn good intermediate representations that can be *shared* across tasks

Deep architectures

- Deep architectures learn good intermediate representations that can be *shared* across tasks
- Different tasks can share the same highlevel feature
- Different high-level features can be built from the same set of lower-level features

Hierarchical processing of depth

Building distributed representations of the binocular visual signal

Q: What features?

A: Local amplitude, phase and orientation

Through a multi-channel Gabor-like decomposition of the visual signal

Pros:

- Higher flexibility having not decided a priori what features to be extracted
- We can rely on a powerful computational theory

Cons:

Features are derived qualities based on local phase properties

Contrast discontinuities	\rightarrow	phase <i>congruency</i>	
Binocular disparity	\rightarrow	phase <i>difference</i>	
Visual motion	\rightarrow	phase <i>constancy</i>	

Deep representation hierarchies

Complex cells "pool" the output of simple cells within a retinotopic neighborhood

Linking phase and energy models

Phase-based measures ...

- Contrast discontinuities Visual motion Binocular disparity
- → phase *congruency*
- → phase *constancy*
- → phase *difference*

VS.

- ... energy coding
- → Contrast energy
- \rightarrow Motion energy
- \rightarrow Binocular energy

[Morrone & Burr, 1982, 1988] [Adelson & Bergen, 1985] [Ohzawa et al., 1990]

Binocular energy unit

$$I^{L}(x), \quad I^{R}[x+\delta(x)]$$

$$\mathbf{h}^{L}(x;k_{0},\psi_{L}) = e^{-x^{2}/\sigma^{2}}e^{i(k_{0}x+\psi_{L})}$$
$$\mathbf{h}^{R}(x;k_{0},\psi_{R}) = e^{-x^{2}/\sigma^{2}}e^{i(k_{0}x+\psi_{R})}$$

$$Q^{L/R}(x) = \mathbf{h}^{L/R} * I^{L/R}(x) e^{-j\psi_{L/R}}$$

$$r_{c}(x_{0}) = \left| Q^{L}(x_{0}) + e^{j\Delta\psi} Q^{R}(x_{0}) \right|^{2}$$

where
$$\Delta \psi = \psi_R - \psi_L$$

[Qian, 1994][Fleet et al., 1996]

Binocular energy unit

The binocular energy unit maximally responds when $\Delta \psi$ matches the image phase disparity $\Delta \phi$.

Binocular energy unit

Disparity tuning curve

Stimulus disparity $[D_{max}]$

$$\delta_{pref} \propto rac{\Delta \psi}{k_0}$$

The binocular energy unit maximally responds when $\Delta \psi$ matches the image phase disparity $\Delta \phi$.

Large scale cortical architectures

2×56 binocular receptive fields for each pixel

A set of oriented Gabor receptive fields with different phase shifts but centered at the same retinal position.

Large scale cortical architectures

2×56 binocular receptive fields for each pixel

[M. Chessa, S.P. Sabatini and F. Solari *A fast joint bioinspired algorithm for optic flow and two-dimensional disparity estimation.* 7th Int. Conference on Computer Vision Systems (ICVS'09), 13-15 October 2009, Liege, Belgium.]

Large scale cortical architectures

2×56 binocular receptive fields for each pixel

[M. Chessa, S.P. Sabatini and F. Solari *A fast joint bioinspired algorithm for optic flow and two-dimensional disparity estimation*. 7th Int. Conference on Computer Vision Systems (ICVS'09), 13-15 October 2009, Liege, Belgium.]

Enabling disparityvergence responses in stereo-heads

3D active vision requires \neq specializations

Disparity estimation

 Δ = maximum detectable disparity along the direction orthogonal to the cell's orientation, equals one half cycle of the peak spatial frequency of the RF

Direct vergence control

Assuming $VD \cong 0$, the orientation is used to extend the sensitivity range of the cells' population to HD stimuli.

3D active vision requires \neq specializations

Disparity estimation

Intersection of

constraints

Learning Algorithms

<u>Reinforcement learning</u>, based on particle swarm optimization algorithm

[A. Gibaldi, A. Canessa, M. Chessa, F. Solari, S.P. Sabatini. *How a population-based representation of binocular visual signal can intrinsically mediate autonomous learning of vergence control*. Procedia Computer Science 13: 212–221, 2012]

Supervised learning, based on LeNet non-linear convolutional

Network [N. Chumerin, A. Gibaldi, S.P. Sabatini and M.M. Van Hulle *Learning Eye Vergence Control from a Distributed Disparity Representation*. International Journal of Neural Systems, Vol. 20, p 267-278, 2010]

Differential Hebbian Rule:

$$w_i \Big|_t = (1 - \eta) w_i \Big|_{t-1} + \eta V_S(\mathbf{r}_c \Big|_{t-1}) \Delta r_c^i$$

 $\Delta r_c^i \qquad : \text{ Differential population response} \\ \mathsf{V}_{S}(\mathbf{r}_c\big|_{t-1}): \text{ Vergence signal at instant } t-1 \\ \eta \qquad : \text{ Learning rate} = \Delta \text{STD of the} \end{cases}$

population response

→ INTRINSIC REWARD!

Simulation Results

moving stimuli

Model

Real data

[A. Gibaldi, M. Chessa, A. Canessa, S.P. Sabatini, F. Solari A cortical model for binocular vergence control without explicit calculation of disparity. Neurocomputing, Vol. 73, p 1065-1073, 2010.]

[A. Gibaidi, A. Canessa, M. Chessa, F. Solari, S.P. Sabatini. A neural model for coordinated control of horizontal and vertical alignment of the eyes in three-dimensional space. Proc. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 24-27 June 2012.]

Experimental results

Videos: http://www.eyeshots.it/res_news.php

Switching fixations among static visual targets

Stepping and waving objects

Videos

Measured vergence working ranges

Measured vergence working ranges

Progress toward a *Neuroware* for humanoid robots

for humanoid robots

- Goal: development of a neural library on GPU to enable real-time perceptual processing through neuromorphic paradigms
 - perceptual engines accessible through SW developed in standard programming languages extended with specific keywords and syntaxes → CUDA C/C++
 - flexible functions to be called in different contexts for enabling basic sensorimotor skills

[M. Chessa, V. Bianchi, M. Zampetti, S. P. Sabatini, F. Solari (2012) *Real-time simulation of large-scale neural architectures for visual features computation based on GPU.* Network: Computation in Neural Systems 23(4), pp. 272-291.]

[M. Chessa and G. Pasquale (2013) *Graphics processing unit-accelerated techniques for bio-inspired computation in the primary visual cortex.* Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.3118]

Comparing different implementation strategies

1. Data parallelism...

CUDA kernels...

Comparing different implementation strategies

1. Data parallelism... and task parallelism

CUDA kernels... and CUDA streams

2. OpenCV / CUDA

- C++ using OpenCV's interface to CUDA or OpenCV's processing primitives
- CUDA C/C++ using CUDA runtime APIs or NVDIA performance primitives
- 3. "grouped" vs. "ungrouped" data structures
 - All response matrices in separate memory locations
 - A unique matrix for responses of cells with equal phase-shift
 - Left and right responses replicated in equal matrices

Different data structures

Different data structures

Examples

shiftSimpleResponses_noGroup

Examples

R

 $Im\{Q_{\theta,w}\}$

 $\theta_0 \ \theta_1 \ \theta_2 \ \theta_3 \ \theta_4 \ \theta_5$

 $EPS_{float} = 10^{-6}$

calcEnergy_noGroup

Performance evaluation for full disparity estim.

Conclusions

Take-home messages

Alternative to feature extraction

 Deriving features from spatio-temporal properties of the visual *signal* in the harmonic domain

Alternative to measures

- Distributed coding through populations of cells tuned to space-time phase relationships
 - Increased flexibility
 - Improved resistance to noise
 - Crucial to avoid sequentialization of sensor and motor processes
- Different modes of specializations through parallel hierarchies
- Efficient implementation on modern graphic cards

The Group

Fabio Solari

Manuela Chessa

Andrea Canessa

Agostino Gibaldi

Contact: silvio.sabatini@unige.it

Acknowledgements:

European FP7 Project EYESHOTS – "Heterogeneous 3D perception across visual fragments" – www.eyeshots.it

