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Binocular eye movements & stereopsis

Convergent optical axes

 Deviations from primary 
position rotate the epipolar 
lines and vertical disparities 
(VD) become possible

 As the eyes move the 
epipolar lines move and 
become more and more tilted

 Larger search zones to solve 
the stereo correspondence 
problem

LEFT RIGHT
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An active vergent system has to cope with the 
attendant aperture problem for binocular disparity
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… for reciprocal improvement of stereopsis and binocular 
control of eye movements

 VERGENCE AS A PARADIGMATIC TASK

 The question arises how to learn disparity-vergence 
response curves, directly (without explicit calculation of 
the disparity map)

 We will demonstrate that it is possible to gain different 
specializations according to the paradigm of deep 
architecture

Different specializations
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Deep architectures

 Deep architectures learn 
good intermediate 
representations that can 
be shared across tasks

raw input 

shared 
intermediate 
representation 

task 1
output 1 

task 2
output 2 

task 3
output 3 

[Adapted from Bengio, 2009]
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Deep architectures

[Adapted from Bengio, 2009]

High-level features 

Low-level features 

task 1
output y1

task N
output yN

…

…

…

…

…
 Deep architectures learn 

good intermediate 
representations that can 
be shared across tasks

 Different tasks can 
share the same high-
level feature

 Different high-level 
features can be built 
from the same set of 
lower-level features
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Cortical architecture
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“Where”

“What”

Spatial relationships

Object recognition

What is where?

A two-fold problem sharing the same 
resources at an early level

Hierarchical processing of depth
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Building distributed 
representations of the 
binocular visual signal
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Harmonic featureless representation

Q: What features?

A: Local amplitude, phase and orientation
Through a multi-channel Gabor-like decomposition of the 
visual signal

Pros:
 Higher flexibility having not decided a priori what features to be 
extracted
 We can rely on a powerful computational theory

Cons:
 Features are derived qualities based on local phase properties

Contrast discontinuities  phase congruency
Binocular disparity  phase difference
Visual motion  phase constancy
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Deep representation hierarchies

Measures

Population codes

in …

out1

out2

in … …

…

…

read-out1
read-out2

S-cells

C-cells



11

Complex cells

Complex cells “pool” the output of simple cells within 
a retinotopic neighborhood

LINEAR 
FILTER 
BANKS

NL FEATURE 
POOLING

simple cells complex cell

Energy models
L (  )2

Lq (  )2

S-cells C-cell
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Phase-based measures …

vs.
… energy coding

Contrast discontinuities  phase congruency
Visual motion  phase constancy
Binocular disparity  phase difference

Linking phase and energy models

 Contrast energy [Morrone & Burr, 1982, 1988]

 Motion energy [Adelson & Bergen, 1985]

 Binocular energy [Ohzawa et al., 1990]
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[Fleet et al., 1996] [Qian, 1994] 
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Corresponding points
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Binocular energy unit

Re

Im

 RQ

LQ

The binocular energy unit 
maximally responds when         
matches the image phase 
disparity      . 







15

Binocular energy unit

Re

Im
LQ

The binocular energy unit 
maximally responds when         
matches the image phase 
disparity      . 
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Lh Rh

y

x

Large scale cortical architectures

256 binocular receptive fields for each pixel
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A set of oriented Gabor receptive fields with different phase shifts 
but centered at the same retinal position.
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Lh Rh
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Large scale cortical architectures

256 binocular receptive fields for each pixel
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Disparity tuning 
surface
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[M. Chessa, S.P. Sabatini and F. Solari A fast joint bioinspired algorithm for 
optic flow and two-dimensional disparity estimation. 7th Int. Conference on 
Computer Vision Systems (ICVS'09), 13-15 October 2009, Liege, Belgium.]
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Large scale cortical architectures

256 binocular receptive fields for each pixel
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[M. Chessa, S.P. Sabatini and F. Solari A fast joint bioinspired algorithm for 
optic flow and two-dimensional disparity estimation. 7th Int. Conference on 
Computer Vision Systems (ICVS'09), 13-15 October 2009, Liege, Belgium.]
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Enabling disparity-
vergence responses in 
stereo-heads
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Disparity estimation
∆ = maximum detectable 
disparity along the direction 
orthogonal to the cell’s 
orientation, equals one half cycle 
of the peak spatial frequency of 
the RF

Assuming VD  0, 
the orientation is 
used to extend the 
sensitivity range of 
the cells’ population 
to HD stimuli.

3D active vision requires  specializations

Direct vergence control
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3D active vision requires  specializations
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Reinforcement learning, based on particle swarm optimization
algorithm
[A. Gibaldi, A. Canessa, M. Chessa, F. Solari, S.P. Sabatini. How a population-based representation of binocular visual signal can
intrinsically mediate autonomous learning of vergence control. Procedia Computer Science 13: 212–221, 2012]

Supervised learning, based on LeNet non-linear convolutional
network [N. Chumerin, A. Gibaldi, S.P. Sabatini and M.M. Van Hulle Learning Eye Vergence Control from a Distributed
Disparity Representation. International Journal of Neural Systems, Vol. 20, p 267-278, 2010]

Learning Algorithms

Differential Hebbian Rule:
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: Vergence signal at instant t -1

: Learning rate = STD of the
population response

: Differential population response

 INTRINSIC REWARD!
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Time steps

@trial 200
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Time steps

@trial 1500

[Gibaldi et al., Autonomous Learning of Disparity-Vergence Behaviour through
distributed coding and population reward: basic mechanisms and real-world
conditioning on a robot stereo head. Robotics & Automation Systems Journal ,
submitted]

weight 
distribution
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[Hung, 1997]

Model Real data

[A. Gibaldi, M. Chessa, A. Canessa, S.P. Sabatini, F. Solari A cortical
model for binocular vergence control without explicit calculation of
disparity. Neurocomputing, Vol. 73, p 1065-1073, 2010.]

Simulation Results
moving stimuli
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[Hung, 1997]

Real data

[A. Gibaldi, A. Canessa, M. Chessa, F. Solari, S.P. Sabatini. A neural
model for coordinated control of horizontal and vertical alignment of the
eyes in three-dimensional space. Proc. 4th IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatronics
(BioRob), 24-27 June 2012.]

Experimental Results
moving stimuli
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Stepping and 
waving objects

Switching fixations among 
static visual targets

Experimental results
Videos: http://www.eyeshots.it/res_news.php

Videos
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Combined control of horizontal and 
vertical vergence



Measured vergence working ranges

Helmholtz (=Tilt-Pan) system

30

iCub
[Gibaldi et al., submitted]

X

Z



Measured vergence working ranges

Fick (=Pan-Tilt) system
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Koala

X

Z

[Gibaldi et al., submitted]
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Progress toward a 
Neuroware
for humanoid robots



Progress toward a Neuroware

33

for humanoid robots

 Goal: development of a neural library on GPU to 
enable real-time perceptual processing through 
neuromorphic paradigms

 perceptual engines accessible through SW developed in 
standard programming languages extended with specific 
keywords and syntaxes  CUDA C/C++

 flexible functions to be called in different contexts for 
enabling basic sensorimotor skills

[M. Chessa, V. Bianchi, M. Zampetti, S. P. Sabatini, F. Solari (2012) Real-time simulation of large-scale neural architectures 
for visual features computation based on GPU. Network: Computation in Neural Systems 23(4), pp. 272-291.]

[M. Chessa and G. Pasquale (2013) Graphics processing unit-accelerated techniques for bio-inspired computation in the 
primary visual cortex. Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.3118]



Progress toward a Neuroware
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Comparing different implementation strategies
1. Data parallelism…

CUDA kernels…



Progress toward a Neuroware
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Comparing different implementation strategies
1. Data parallelism… and task parallelism

CUDA kernels… and CUDA streams

2. OpenCV / CUDA
‐ C++ using OpenCV’s interface to CUDA or OpenCV’s processing primitives
‐ CUDA C/C++ using CUDA runtime APIs or NVDIA performance primitives

3. “grouped” vs. “ungrouped” data structures
‐ All response matrices in separate memory locations
‐ A unique matrix for responses of cells with equal phase‐shift
‐ Left and right responses replicated in equal matrices



Progress toward a Neuroware
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Different data structures

ph
as
e

phase

Array of pointers
2D array



Progress toward a Neuroware
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Different data structures

Array of pointers
2D array

fre
qu

en
cy

frequency



Progress toward a Neuroware
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Examples
shiftSimpleResponses_noGroup

i []

Lh Rh

j []



Progress toward a Neuroware
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Examples
calcEnergy_noGroup
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Progress toward a Neuroware
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Performance evaluation for full disparity estim.
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Conclusions
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 Alternative to feature extraction
 Deriving features from spatio-temporal properties of the 

visual signal in the harmonic domain

 Alternative to measures
 Distributed coding through populations of cells tuned to 

space-time phase relationships
 Increased flexibility
 Improved resistance to noise
 Crucial to avoid sequentialization of sensor and motor processes

 Different modes of specializations through parallel 
hierarchies

 Efficient implementation on modern graphic cards

Take-home messages



The GroupThe Group

Acknowledgements:
European FP7 Project EYESHOTS – “Heterogeneous 3D
perception  across visual fragments” – www.eyeshots.it

Fabio 
Solari

Manuela 
Chessa

Andrea 
Canessa

Agostino 
Gibaldi

Contact:    silvio.sabatini@unige.it


