Structured representations of human robot collaborative action

Aaron F. Bobick

(but really Kelsey P. Hawkins, Shray Bansal, and Nam Vo)

Center for Robotics and Intelligent Machines School of Interactive Computing Georgia Tech

Modeling structured activity to support human-robot collaboration in the presence of task and sensor uncertainty

Aaron F. Bobick

(but really Kelsey P. Hawkins, Shray Bansal, and Nam Vo)

Center for Robotics and Intelligent Machines School of Interactive Computing Georgia Tech

Modeling **structured activity** in the presence of **task and sensor uncertainty** to support **human-robot collaboration**

Aaron F. Bobick

(but really Kelsey P. Hawkins, Shray Bansal, and Nam Vo)

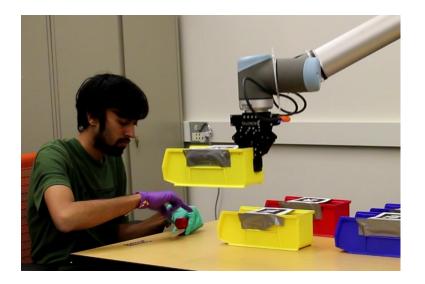
Center for Robotics and Intelligent Machines School of Interactive Computing Georgia Tech

Anticipating the actions of humans

 Goal: Anticipate the actions of humans such that a robot can anticipate the needs of the human to provide assistance when needed – no waiting.

A challenge because:

- Human collaborator doesn't do same thing every time, even in assembly situations
- 2. The rate at which they do it varies
- 3. Perception is (usually) an uncertain business
- 4. Robots take time to do things *(way too much time)*

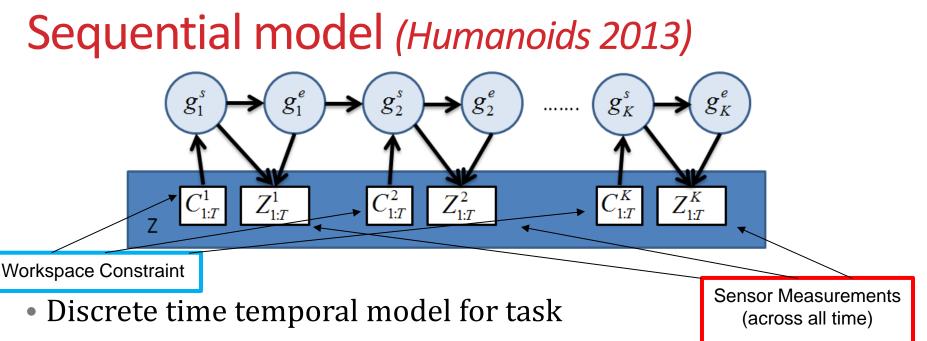


- 1. Compile **structured representations** of activity into **probabilistic** system for reasoning about task and timing
 - The variables of interest: the stop and end time of **sub-actions**
- 2. Learn from (very small amounts of) data:
 - Duration models of sub-actions
 - Likelihood of branches in activity
 - **Perceptual detectors** that encode (noisy) information about the human performance (or start and end) of actions
- 3. At every time step, perform inference on *all* actions.
- 4. Make **plans** based upon probabilistic assessment of what actions will be done and when Minimize an HRI cost.

- 1. Compile **structured representations** of activity into **probabilistic** system for reasoning about task and timing
 - The variables of interest: the stop and end time of **sub-actions**
- 2. Learn from (very small amounts of) data:
 - Duration models of sub-actions
 - Likelihood of branches in activity
 - **Perceptual detectors** that encode (noisy) information about the human performance (or start and end) of actions
- 3. At every time step, perform inference on *all* actions.
- 4. Make **plans** based upon probabilistic assessment of what actions will be done and when Minimize an HRI cost.

- 1. Compile **structured representations** of activity into **probabilistic** system for reasoning about task and timing
 - The variables of interest: the stop and end time of **sub-actions**
- 2. Learn from (very small amounts of) data:
 - Duration models of sub-actions
 - Likelihood of branches in activity
 - **Perceptual detectors** that encode (noisy) information about the human performance (or start and end) of actions
- 3. At every time step, perform inference on *all* actions.
- 4. Make **plans** based upon probabilistic assessment of what actions will be done and when Minimize an HRI cost.

- 1. Compile **structured representations** of activity into **probabilistic** system for reasoning about task and timing
 - The variables of interest: the stop and end time of **sub-actions**
- 2. Learn from(very small amounts of) data:
 - Duration models of sub-actions
 - Likelihood of branches in activity
 - **Perceptual detectors** that encode (noisy) information about the human performance (or start and end) of actions
- 3. At every time step, perform inference on *all* actions.
- 4. Make **plans** based upon probabilistic assessment of what actions will be done and when Minimize an HRI cost.



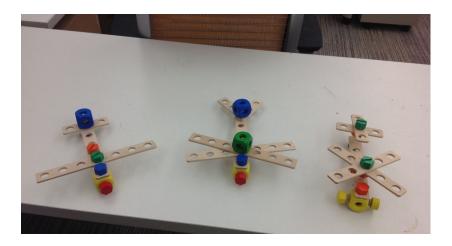
- Duration model: $P(g_k^e | g_k^s) \propto D_k(g_k^e g_k^s)$
- Sensor model: $P(Z^k | g_k^s, g_k^e)_{\{1:T\}}$ (non-informative future)
- Inference model (basic chain):

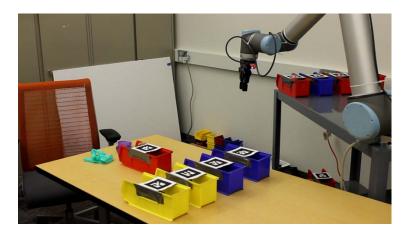
$$P(g,Z) = \prod_{k=1}^{K} P(g_{k}^{s} | g_{k-1}^{e}) P(g_{k}^{e} | g_{k}^{s}) P(Z^{k} | g_{k}^{s}, g_{k}^{e})$$

 At every moment in time can infer the distribution of all the sub-tasks start and end times

Aaron Bobick

Our domain





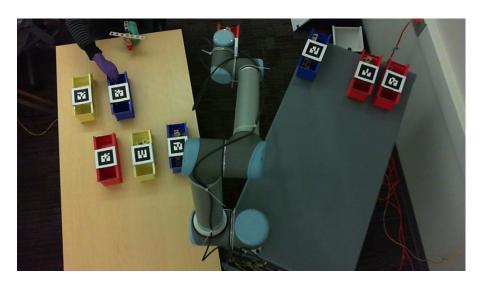
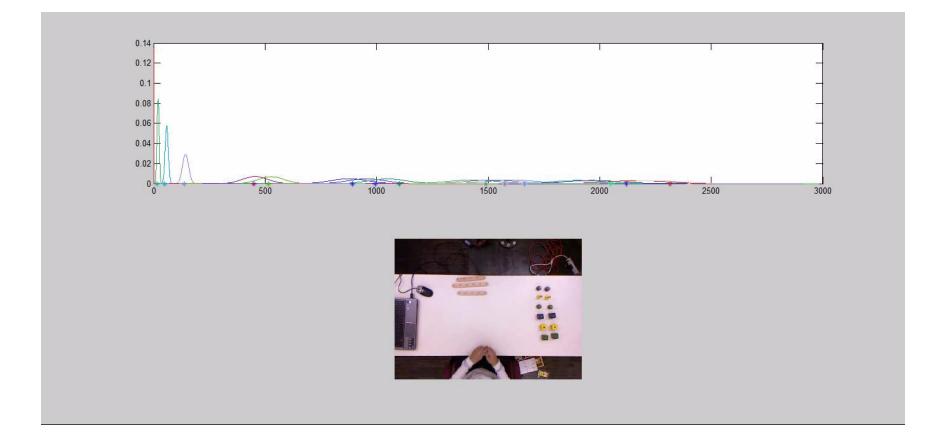
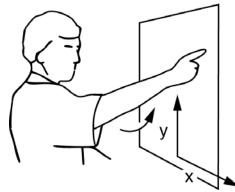


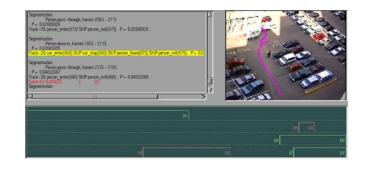
Illustration of inference

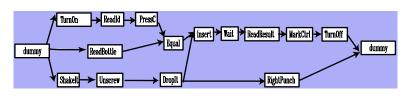


A very brief history of some of our computer vision work...

- Parametric HMMs for "structured" gesture recognition
 - Coupled parametric modeling with graphical model inference
- Stochastic Context Free Grammar based representation and parsing
 - Richly expressive for activity description
 - Easy to build higher level activity from reused low level vocabulary.
- P-Net (Propagation nets)
 - Focused on *intervals*
 - Specify the structure with some annotation can *learn detectors and triggering probabilities*

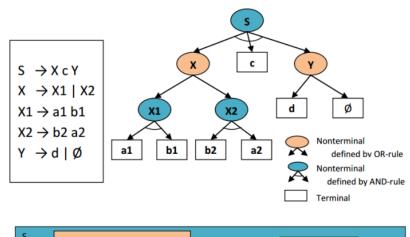


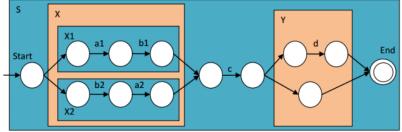




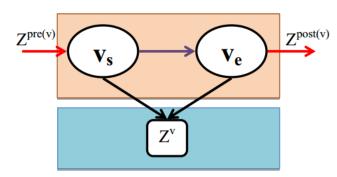
Grammars: More interesting task descriptions

- First do "a" and "b" in any order, then do "c" and optionally then do "d"
- Can be written as a (trivial) grammar:
 S → (a b | b a) c (d | ø)
- An AND-OR tree that expresses temporal ordering and selection

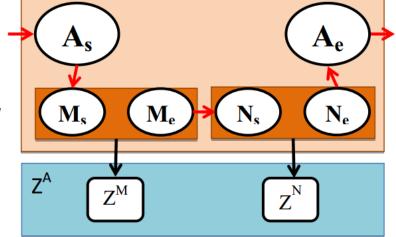




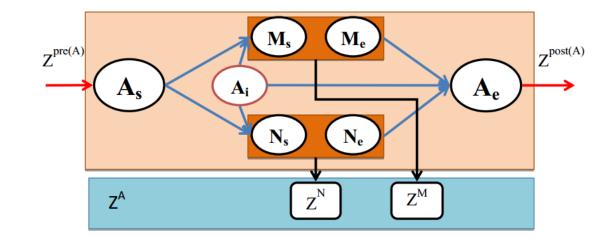
From AND-OR to Bayes Networks (ICRA '2014)



AND: **A** -> **MN**



Primitive action **v**



OR: **A** -> **M** | **N**

Some gratuitous math...

The input include: (1) $P(\exists S)$: the prior probability of S happening, (2) $P(S_s|\exists S)$: The prior probability of the start of S, (3) $P(Z^{end}|S_e, \exists S)$: the likelihood representing the constraint on the end of S, and (4) the CPT $P(A_e|A_s)$ and $P(Z^A|A_s, A_e)$ for all primitive action A (recall that our random variables have discrete values between 1 and T. The special value $A_s = A_e = -1$ means $\exists A$, the case where the action A happens)

Step 1, Forward phase: Given $P(A_s, Z^{pre(A)}|\exists A)$, one can compute $P(A_e, Z^{pre(A),A}|\exists A)$ for every action A (where $Z^{pre(A)}$ stands for the observation of all actions happening before A). If A is a primitive action, then compute the joint $P(A_s, A_e, Z^{pre(A),A}|\exists A)$ and perform marginalization. If A is defined as M AND N, then recursively compute $P(M_e, Z^{pre(A),M}|\exists M)$ and $P(N_e, Z^{pre(A),M,N}|\exists N)$ then we have the distribution of A_e the same as N_e . On the other hand if A is defined as M OR N, then the distribution of A_e will be weighted combination of M_e and N_e according to equation 3.

The forward process starts with $P(S_s|\exists S)$ and recursively compute $P(A_s, Z^{pre(A)}|\exists A)$, $P(A_e, Z^{pre(A),A}|\exists A)$ for every action A

Step 2, Backward phase: similarly, this process starts with $P(Z^{end}|S_e, \exists S)$ and recursively compute $P(Z^{post(A)}|A_e, \exists A), P(Z^{A,post(A)}|A_s, \exists A)$ for every action A (here $Z^{post(A)}$ stands for observation of all actions happening after A).

Step 3, compute the posteriors: this is done simply by multiplying the forward and backward messages, we obtain $P(A_s, Z | \exists A)$ and $P(A_e, Z | \exists A)$ for every action A. Additionally we can have $P(Z) = \sum_{t>0} P(S_s = t, Z)$

Step 4, compute the posterior probabilities of an action happening: starting with $P(\exists S|Z) = P(\exists S) = 1$, evaluate $P(\exists A|Z)$ for every symbol A recursively.

Given S is defined as A AND B, then $P(\exists A|Z) = P(\exists B|Z) = P(\exists S|Z)$.

Given S is defined as A OR B, one can compute (apply similar formulas for B):

$$P(\exists A|Z) = P(\exists S|Z) \frac{P(\exists A, Z|\exists S)}{P(\exists A, Z|\exists S) + P(\exists B, Z|\exists S)}$$
(1)

where $P(\exists A, Z | \exists S)$ can be calculated:

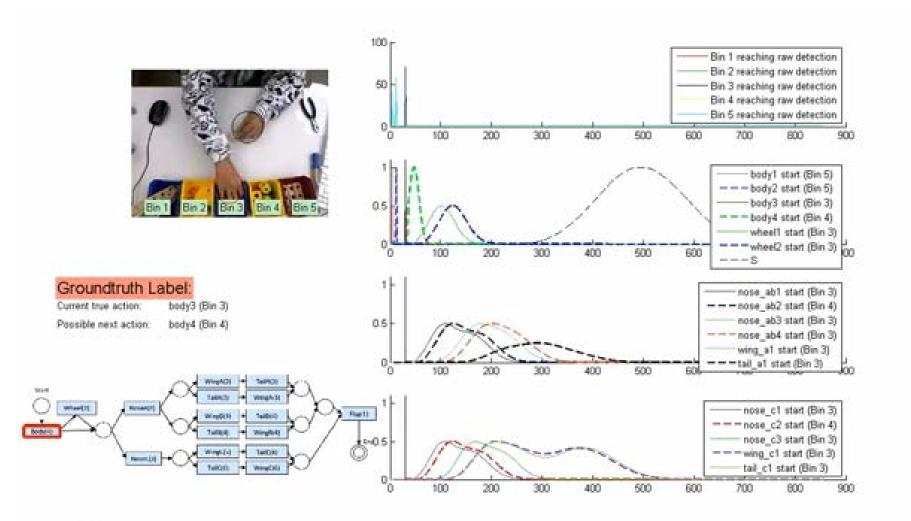
$$P(\exists A, Z | \exists S) = P(\exists A | \exists S) \sum_{t>0} P(A_e = t, Z | \exists A)$$
 (2)

Output: the probability of action A happening $P(\exists A|Z)$, and if that the case, the distribution of the start and end $P(A_s, Z|\exists A)$, $P(A_e, Z|\exists A)$. We can compute:

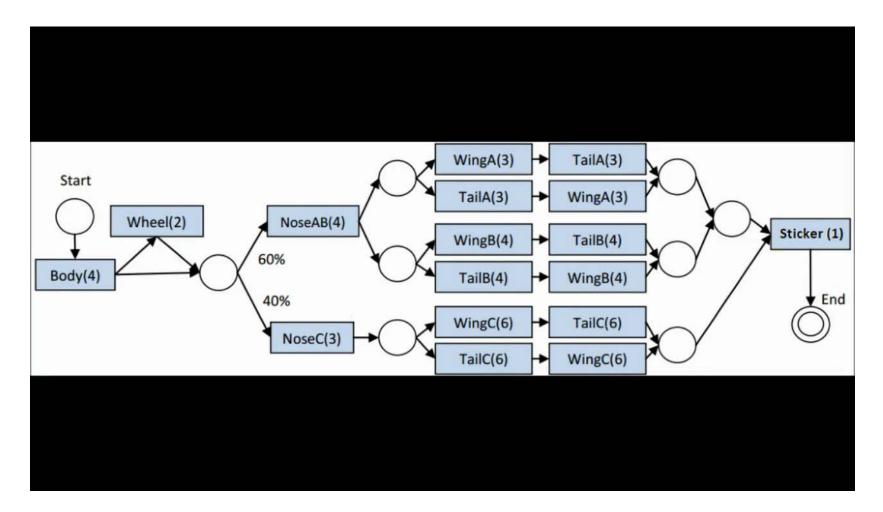
$$P(A_s|Z) = P(\exists A|Z) \frac{P(A_s, Z|\exists A)}{\sum_{t>0} P(A_s = t, Z|\exists A)}$$
(3)

for values between 1 and T. Note that $P(A_s = -1|Z) = P(!A|Z) = 1 - P(\exists A|Z)$.

Evolving prediction uncertainty



Parsing (only) video (and more CVPR 2014)



Aaron Bobick

Back to robotics...

Aaron Bobick

Given timing distributions, we need a plan

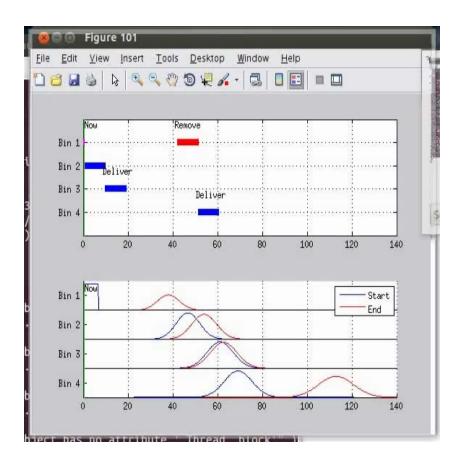
 Two sources of "cost": remove a bin early, deliver a bin late. Can be condensed to function of individual wait times:

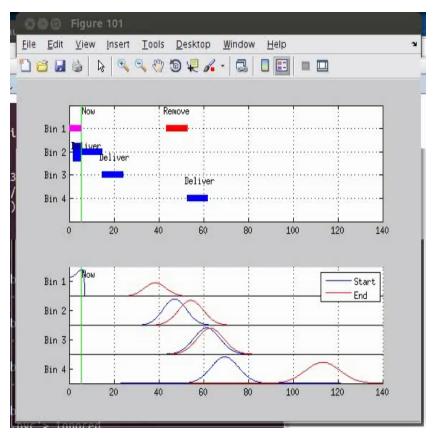
$$C = \sum_{i} \Psi(w_{i})$$

where *i* is for each time the human needs to wait, *wi* is the amount of wait time *i*, and Ψ is sum HRI determined function we used quadratic) Note this is not necessarily total execution time.

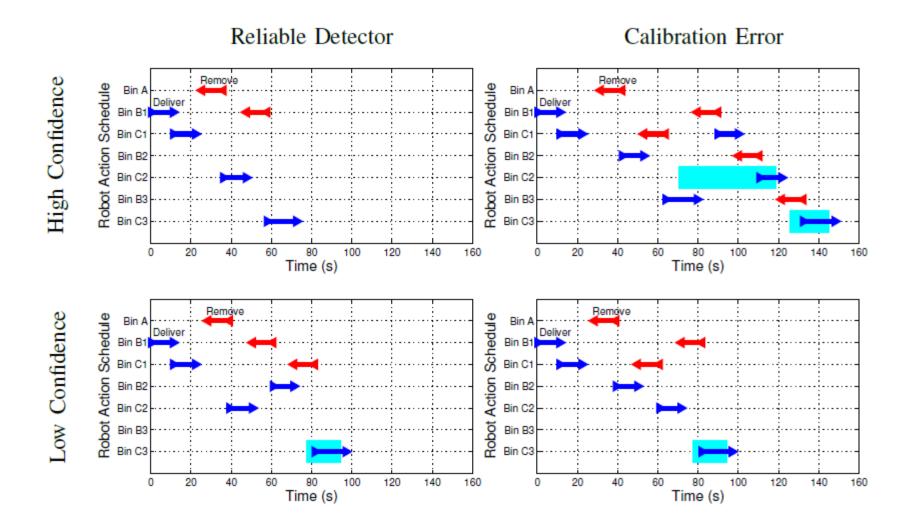
Planning is a heuristic over the independently considered intervals.

Planning in action



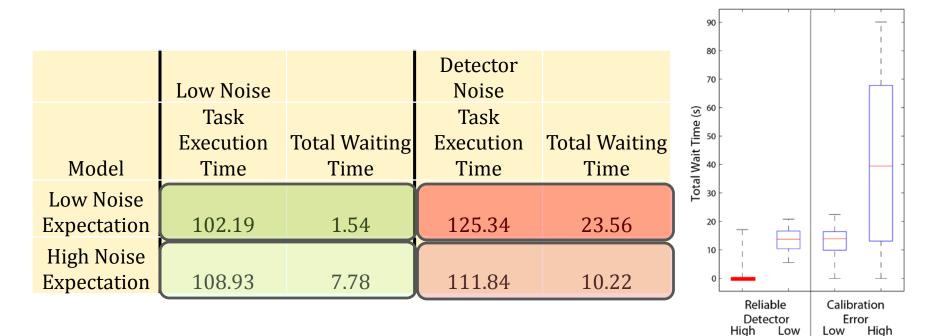


Certainty of belief affects plan



Simulation

• Can explicitly vary *expected uncertainty* with *actual uncertainty* (or variability)



Conf.

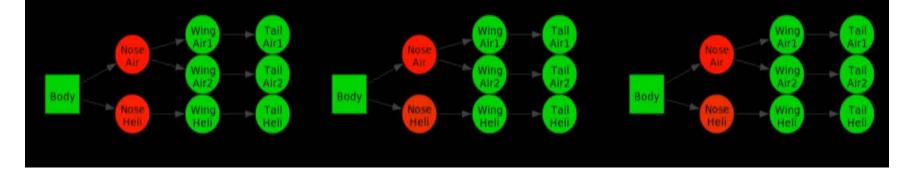
Conf.

Conf.

Conf.

Working with the robot

Task indeterminacy



Conclusions

- Three sources of uncertainty in a robot needing to anticipate human action:
 - Variation in what the human does
 - Variation in how they do it (speed)
 - Uncertainty in perceptual sensing
- Main idea: reason about the likely timing of the start and end of sub-actions given evidence observed so far.
- Automatic conversion from task-level specification
 - Learn probability models from limited data (???)
- (Some) Open problems: learning the grammar, detection of being "off-task"